找回密码
 注册

微信登录,快人一步

QQ登录

只需一步,快速开始

公告区+ 发布

01-08 10:30
01-07 16:18
01-06 15:55
01-03 17:36
01-03 09:00
01-02 17:30
查看: 2007|回复: 11

Cell:科学家找到病菌耐药性“七寸”

 火.. [复制链接]
发表于 2013-2-4 13:36 | 显示全部楼层 |阅读模式

马上注册登录,享用更多感控资源,助你轻松入门。

您需要 登录 才可以下载或查看,没有账号?注册 |

×
复旦大学上海医学院英国籍全职长江学者特聘教授、复旦大学生物医学研究院研究员Alastair Murchie和研究员陈东戎带领的课题组,历经3年多艰辛努力,在耐药性病原菌中首次发现了一种对控制此类抗生素的耐药性有重大作用的新型“核糖开关”,有望攻克此类药物带来的耐药难题。

评分

参与人数 1威望 +5 金币 +10 收起 理由
细菌耐药 + 5 + 10 赞一个!

查看全部评分

回复

使用道具 举报

 楼主| 发表于 2013-2-4 13:37 | 显示全部楼层
困扰人类许久的抗生素耐药,终于找到了作用机制。复旦大学上海医学院近日传出消息:该院英国籍长江学者特聘教授阿莱斯迪尔·穆奇与研究员陈东戎教授率领的课题组,历经三年,在氨基糖苷类抗生素中首次发现一种新型“核糖开关”。这一“开关”可诱导细菌产生“破坏分子”,继而灭活抗生素,导致药物失效。相关成果已刊登在国际顶级学术期刊《细胞》上。

随着人类广泛应用抗生素,耐药性问题日益严重。如何找到耐药形成的机制,成为科学家们面临的共同难题。穆奇教授解释,氨基糖苷类抗生素占所有抗生素的20%至30%,这类抗生素以卡那霉素、链霉素、庆大霉素、新霉素为代表,它们主要用于治疗“敏感需氧革兰氏阴性杆菌”所引起的感染。在三年的研究过程中,课题组发现“敏感需氧革兰氏阴性杆菌”会产生两个“破坏分子”,即氨基糖苷乙酰转移酶、氨基糖苷腺苷酰转移酶。这两个“破坏分子”编码基因中的“5\"非翻译区RNA序列”存在一个“核糖开关”,该开关可“一对一”识别氨基糖苷类抗生素,并与之结合、从中“捣乱”,最终诱导耐药基因的表达。就此,抗生素耐药产生了。

业内专家评价说,穆奇教授团队的成果,可以从根本上解决耐药问题。通过开发靶向药物,改变“破坏分子”的编码基因,可斩断“核糖开关”与抗生素之间的关联,继而彻底解决耐药问题。

不过穆奇教授坦言,解决抗生素耐药,除了从基础研究领域突破之外,临床上避免滥用抗生素仍是至关重要的环节。只有合理应用、有的放矢,抗生素才能在维护人类健康中更好地发挥作用。

复旦大学上海医学院英国籍全职长江学者特聘教授阿莱斯迪尔·穆奇(Alastair Murchie)课题组在耐药性病原菌中首次发现了一种由氨基糖苷类抗生素药物调控的新型“核糖开关”,该“开关”对控制此类抗生素的“耐药性”有重大作用。这一成果近日刊发于最新一期世界顶级学术杂志《细胞》。它为人类最终攻克抗生素耐药的世纪难题提供了全新视角和理论依据。

英国籍科学家阿莱斯迪尔·穆奇教授2005年起到复旦大学全职任教,他与陈东戎研究员率领课题组,历经3年多艰辛,发现了一种由氨基糖苷类抗生素药物调控的新型“核糖开关”,对控制此类抗生素的“耐药性”有重大作用。该成果符合开发新型靶标药物的要求,具有极大的临床实用潜力。

在我国,由于存在大量抗生素滥用现象,致病菌耐药性的危害更为普遍和形势严峻。该课题组此次发现的由氨基糖苷类抗生素药物调控的新型“核糖开关”,有望攻克此类药物带来的耐药难题。最新研究证明“核糖开关”是自然界细菌、高等植物等天然存在的、有调控作用的传感器,位于细菌等体内特定的基因非编码区,它通过结合细菌等体内小分子代谢物来调控基因的表达,可以不依赖任何蛋白质因子而直接结合代谢物并发生结构变化,参与调控生物的基本代谢。

阿莱斯迪尔·穆奇教授认为,虽然对现有药物进行轻微改造,就可以勉强控制现有局面,但从长远来看,研发出能以全新方式靶向杀灭细菌的新型药物则更具吸引力,因为这样就能保持药物的原有临床药效,亦有望通过联合用药等方法彻底解决耐药问题。

复旦大学上海医学院英国籍全职长江学者特聘教授、复旦大学生物医学研究院研究员、复旦大学基础医学院教育部分子医学重点实验室教授 Alastair Murchie和研究员陈东戎率领的课题组,在国家科技部、国家自然基金委、教育部985工程和上海市科委的经费支持下,历经3年多艰辛,终于在耐药性病原菌中首次发现了一种由氨基糖苷类抗生素药物调控的新型“核糖开关”,该“开关”对控制此类抗生素的“耐药性”有重大作用。该成果符合开发新型靶标药物的要求,为人类最终攻克抗生素耐药这一世纪难题提供了全新视角和理论依据,具有极大的临床实用潜力。1月18日,世界顶级学术杂志《细胞》(Cell)以《新型氨基糖苷类抗生素核糖开关的发现》为题,刊发了这一重大发现。

随着人类抗生素的广泛应用,致病菌的耐药性日益严重,因此找到“耐药性如何形成的新机制”已成为各国科学家面临的共同“世纪难题”。而该课题组此次发现的由氨基糖苷类抗生素药物调控的新型“核糖开关”,有望攻克此类药物带来的耐药难题。最新研究证明“核糖开关”是自然界细菌、高等植物等天然存在的、有调控作用的传感器,位于细菌等体内特定的基因非编码区。它通过结合细菌等体内小分子代谢物来调控基因的表达,可以不依赖任何蛋白质因子而直接结合代谢物并发生结构变化,参与调控生物的基本代谢。这一调控机制一经发现,即刻引起各国科学家的高度关注。

以卡那霉素、链霉素、庆大霉素和新霉素等为代表的氨基糖苷类抗生素临床上主要用于治疗“敏感需氧革兰氏阴性杆菌”所导致的脑膜炎、肺炎、骨关节等感染。但研究发现,由这类细菌产生的两个“破坏分子”,即氨基糖苷乙酰转移酶和氨基糖苷腺苷酰转移酶能灭活抗生素,导致抗生素失效,也就是说它是菌体产生耐药的原因之一。

但是,这种耐药性是如何形成的呢?为了搞清楚这一世界性难题,该课题组博士研究生贾旭和张静等在Alastair Murchie教授和陈东戎研究员的指导下,通过大量生物化学、分子生物学等实验和耐心钻研,终于发现上述两个“破坏分子”氨基糖苷乙酰转移酶和氨基糖苷腺苷酰转移酶编码基因的“5’非翻译区RNA序列”区域存在核糖开关元件。它能够“一对一”地识别氨基糖苷类抗生素,并与之结合,从中“捣乱”,改变核糖开关的自身结构,诱导相应耐药基因的表达。于是,耐药性产生了。

该发现拓展了抗生素耐药性的研究领域,开创了抗生素耐药性新的研究方向,使人们对抗生素耐药机制有了新的认识。这种新型调控机制从一个全新的角度深入阐明了抗生素耐药产生的机理。在以后的实践中,科学家可以利用“核糖开关”的功能,根据需要应用某种药物或手段及时“关闭”这两个“破坏分子”的破坏作用,从根本上解决细菌耐药问题。

Alastair Murchie教授认为,虽然对现有药物进行轻微改造,就可以勉强控制现有局面,但从长远来看,研发出能以全新方式靶向杀灭细菌的新型药物则更具吸引力。因为这样就能保持药物的原有临床药效,也有望通过联合用药等方法彻底解决耐药问题。

回复

使用道具 举报

 楼主| 发表于 2013-2-4 13:38 | 显示全部楼层
http://www.cell.com/abstract/S0092-8674(12)01541-3

Cell, Volume 152, Issue 1, 68-81, 17 January 2013
Copyright

                               
登录/注册后可看大图
2013 Elsevier Inc. All rights reserved.
10.1016/j.cell.2012.12.019

AuthorsXu Jia, Jing Zhang, Wenxia Sun, Weizhi He, Hengyi Jiang, Dongrong Chen

                               
登录/注册后可看大图
, Alastair I.H. Murchie

                               
登录/注册后可看大图
See Affiliations
  • Hint: Rollover Authors and Affiliations


Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China School of Pharmacy, Fudan University, Zhang Heng Road 826, Pudong, 201203, Shanghai, China Department of Biomedical Science, Chengdu Medical College, Tian Hui Road 601, 610083, Chengdu, China Corresponding author These authors contributed equally to this work

  • Highlights
  • The 5

                                   
    登录/注册后可看大图
    leader RNA of aminoglycoside antibiotic-resistance genes is conserved
  • Aminoglycosides induce reporter gene expression by interacting with the leader RNA
  • The aminoglycosides bind to the leader RNA and induce a change in the RNA structure
  • Induction is independent of leader peptide stalling or drug-ribosome interactions
SummaryThe majority of riboswitches are regulatory RNAs that regulate gene expression by binding small-molecule metabolites. Here we report the discovery of an aminoglycoside-binding riboswitch that is widely distributed among antibiotic-resistant bacterial pathogens. This riboswitch is present in the leader RNA of the resistance genes that encode the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes that confer resistance to aminoglycoside antibiotics through modification of the drugs. We show that expression of the AAC and AAD resistance genes is regulated by aminoglycoside binding to a secondary structure in their 5

                               
登录/注册后可看大图
leader RNA. Reporter gene expression, direct measurements of drug RNA binding, chemical probing, and UV crosslinking combined with mutational analysis demonstrate that the leader RNA functions as an aminoglycoside-sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycosides antibiotic resistance.




PIIS0092867412015413_fx1_lrg.jpg
回复

使用道具 举报

发表于 2013-2-4 13:40 | 显示全部楼层
学习了,感谢让大家分享。
回复

使用道具 举报

发表于 2013-2-4 13:44 | 显示全部楼层
谢谢老师的资料,下载学习了。
回复

使用道具 举报

发表于 2013-2-4 14:13 | 显示全部楼层
如果这一成果得到应用,那无疑又是人类的一大福音。
回复

使用道具 举报

发表于 2013-2-4 14:17 | 显示全部楼层
是啊,患者的福音,对耐药菌感染的治疗是一大福音。
回复

使用道具 举报

发表于 2013-2-4 14:36 | 显示全部楼层
人类的福音,感谢,感谢
回复

使用道具 举报

发表于 2013-2-4 15:42 | 显示全部楼层
这确实是世界研究的一个热点问题,很开心国内的专家有所突破!向他们学习。
回复

使用道具 举报

发表于 2013-2-5 21:25 | 显示全部楼层
耐药菌的问题越来越受到关注,希望该科研成果能早日应用到临床
回复

使用道具 举报

发表于 2013-2-5 22:14 | 显示全部楼层
又学习了前沿新知识,希望科学家的科研成果早日应用于临床,让更多患者受益。
回复

使用道具 举报

发表于 2013-2-5 22:35 | 显示全部楼层
细菌耐药方面,总算听到了利好消息,这对我国来说尤其重要,希望早日应用于临床。谢谢科学家的贡献,谢谢老师分享!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册 |

本版积分规则

快速回复 返回顶部 返回列表