找回密码
 注册

微信登录,快人一步

QQ登录

只需一步,快速开始

公告区+ 发布

01-11 22:45
01-11 22:43
01-07 16:18
01-06 15:55
01-03 17:36
01-02 17:30
查看: 1290|回复: 2

比较识别医院感染的3个指标

[复制链接]
发表于 2012-10-11 21:48 | 显示全部楼层 |阅读模式

马上注册登录,享用更多感控资源,助你轻松入门。

您需要 登录 才可以下载或查看,没有账号?注册 |

×
本帖最后由 樵夫 于 2012-10-11 21:50 编辑

Presented in part as an Abstract at the 5th Decennial International Conference on Healthcare-Associated Infections, March 21, 2010, Atlanta, GA.

Alan M. Stamm, MD, Christopher J. Bettacchi, MD
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL

published online 22 June 2012.

Background
The best approach to measurement of health care-associated infection rates is controversial.

Methods
We compared 3 metrics to identify catheter-associated bloodstream infection (CA-BSI), catheter-associated urinary tract infection (CA-UTI), and ventilator-associated pneumonia (VAP) in 8 intensive care units during 2009. We evaluated traditional surveillance using National Healthcare Safety Network methodology, data mining with MedMined Data Mining Surveillance (CareFusion Corporation, San Diego, CA), and administrative coding with ICD-9-CM.

Results
A total of 65 CA-BSI, 28 CA-UTI, and 48 VAP was identified. Traditional surveillance detected 58 CA-BSI and no false positives; data mining identified 51 cases but 51 false positives; administrative coding documented 6 cases and 6 false positives. Traditional surveillance detected 27 CA-UTI and no false positives; data mining identified 17 cases but 19 false positives; administrative coding documented 3 cases and 1 false-positive. Traditional surveillance detected 41 VAP and no false positives; data mining identified 26 cases but also 79 false positives; administrative coding found 17 cases and 13 false positives. Overall sensitivities were as follows: traditional surveillance, 0.84; data mining, 0.67; administrative coding, 0.18. Positive predictive values were as follows: traditional surveillance, 1.0; data mining, 0.39; administrative coding, 0.57.

Conclusion
Traditional surveillance proved superior in terms of sensitivity, positive predictive value, and rate estimation.
回复

使用道具 举报

 楼主| 发表于 2012-10-11 21:55 | 显示全部楼层
作者评估了基于NHSN的传统监测法、使用Medmined Data Mining的数据挖掘法和ICD-9编码,结论了传统的方法有较好的敏感性、阳性预测值和率的估计
回复

使用道具 举报

发表于 2012-10-19 10:07 | 显示全部楼层
谢谢 又学习了  收获很大
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册 |

本版积分规则

快速回复 返回顶部 返回列表