Chapter 5 The Evolution of Horizontally Transferred Genes: a Model for Prokaryotes
Iñaki Comas and Fernando González-Candelas
Horizontal gene transfer is a pervasive evolutionary process which has developed and is still developing an essential role in shaping biodiversity through providing opportunities for innovation, moving determinants of functions among taxa, opening opportunities for colonization of new niches, or acting as a catalyst for adaptation. However, its importance in evolution has only recently begun to be recognized. Reasons for this relatively late recognition of HGT and its relevance stem from two main sources. One is the availability, or rather the lack thereof, of appropriate information to infer the existence of HGT. This shortcoming has now been widely overcome with the large, and still growing at a very fast rate, number of completely sequenced genomes, which allow for precise phylogenetic reconstructions, along with the deployment of theoretical models necessary for inferring evolutionary events in deep-time. The second source is the appreciation that HGT does not leave an indelible stamp on the transferred genes because these continue evolving under a different genomic, and often ecological, environment which usually act synergistically to erase the initially clear marks that go along with those genes. In this chapter we provide an overview of these processes along with a model proposal that will help to better understand the consequences of the continuous evolution of laterally transferred genes at different evolutionary time-scales.
Chapter 6 The Extent and Regulation of Lateral Gene Transfer in Natural Microbial Ecosystems
Rustam I. Aminov
The importance of horizontal gene transfer (HGT) in bacterial evolution is evident from the retrospective analyses of bacterial genomes, which suggest that a substantial part of bacterial genomes is of foreign origin. Another line of evidence that supports the possibility of rapid adaptation of bacteria through lateral gene exchange is the history of antibiotic use by humans. Within a very brief period of the "antibiotic era" many bacterial pathogens were able to acquire the mechanisms allowing them to withstand the selective pressure of antibiotics. And finally, the field and microcosm studies allowed monitoring HGT events in situ. In this chapter, a brief overview of the milestones of mobile genetic elements (MGEs) research is given, followed by discussion of the conceptual framework development. Then the occurrence and diversity of MGEs as well as the frequencies of HGT in terrestrial, aquatic, intestinal and biofilm communities are described. The role of environmental factors that may affect MGE-mediated HGT in these ecosystems is also discussed.
Chapter 7 What Maintains Plasmids Among Bacteria?
Francisco Dionisio, Teresa Nogueira, Luís M. Carvalho, Helena Mendes-Soares, Sílvia C. M. Mendonça, Iolanda Domingues, Bernardino Moreira and Ana M. Reis
The ubiquity of plasmids in nature contrasts with our ability to understand their maintenance. Despite the ability of plasmids to transfer across different bacterial taxonomic groups and to carry useful genes to bacterial cells, it is unclear which factors are responsible for plasmid maintenance among bacterial populations. In this review, we present several hypotheses aiming at explaining plasmid existence: efficiency of self-transfer, advantageous genes, transitory derepression of conjugative pili synthesis, compensatory mutations, the existence of amplifier strains, positive epistasis between chromosomal mutations and plasmids, selective sweeps, frequent cross-species transfer, as well as three types of social interactions (exploitation avoidance in the production of public goods, pathogen- or parasite-mediated harmful behavior, biofilm formation). These hypotheses imply that plasmids and their hosts are adaptable to variable conditions and even that plasmids can be irreplaceable under particular circumstances.
Chapter 8 Identification of Mobile Genetic Elements in Metagenomes
Peter Mullany and Adam P. Roberts
Mobile genetic elements are discrete segments of nucleic acid that can translocate from one part of the genome to another, and in the case of conjugative elements between genomes in different cells. The vast majority of our knowledge of mobile genetic elements is derived from experimentation on cultivable bacteria and is therefore incomplete. In this chapter we will discuss the methods available for identifying and isolating these elements from metagenomic samples.
Chapter 9 Horizontal Gene Transfer and Recombination in the Evolution of Antibiotic Resistance Genes
Miriam Barlow, Jared Caywood, Serena Lai, Joshua Finley and Chad Swanlund
Recombination is a mechanism that leads to variation in antibiotic resistance genes. We review its importance in the recently emerged nosocomial pathogen Acinetobacter baumannii, where Horizontal Gene Transfer (HGT) and recombination are major sources of variation for resistance phenotypes. We also present our results focusing on the plasmid borne genes of blaCTX-M, ampC and qac. These results show that random point mutations are not the only major source of variants among the plasmid borne genes, but that homologous recombination is a major contributor of gene variants that can likewise add and remove resistance phenotypes from bacterial populations. Further studies of HGT and recombination are therefore important to determine how their effects can be manipulated to control the occurrence of resistance.
|