黑科技:“细菌胶囊”疫苗 官微已推送
黑科技:“细菌胶囊”疫苗随着全球扩大免疫规划(EPI)的成功实施,EPI针对传染病的发病率和死亡率大幅度下降,每年减少数百万儿童死亡。近年来,随着新发传染病的不断出现,研究新型疫苗载体,探讨新型疫苗形式,以获得安全、稳定和有效的新型疫苗成为人们关注的热点。重组大肠杆菌作为新型疫苗的理想运输工具,以胶囊形式出现,既解决了免疫抑制导致的潜伏感染问题,也有望破解免疫原性差而难以激起机体有效免疫保护的难题。检索:刘金淑译者:刘金淑编写:陈志锦审核:陈志锦大肠杆菌可能是下一代疫苗理想的载体 大多数人在联想到食用大肠埃希氏菌时都会觉得难以接受。然而,如果这吸引眼球的细菌可以用来预防疾病呢?为了这一目标,研究人员利用无害的大肠杆菌菌株做试验。您没听错,其实大多数大肠杆菌是安全的,对于健康人群的消化相当重要。具体地说,他们已经开发出一种基于大肠杆菌的运输胶囊,籍以使下一代疫苗比现在的免疫接种更高效和更有效。
发表在《科学进步》杂志上,研究报告中所介绍的内容强调了该胶囊在抗击肺炎球菌感染的成功,肺炎球菌感染可以导致肺炎、败血症、耳部感染和脑膜炎。
纽约州立大学布法罗分校工程与应用科学学院化学生物工程系副教授布莱恩、A 普法伊费尔博士说,“大肠杆菌能够用来预防疾病,这点听起来似乎有点违反常理。但是,种类繁多的菌种中,有很多在人体内是完全正常的,且在对抗疾病中有很大的潜力。”普法伊费尔是该研究的主要共同作者,他以前的学生查尔斯•h•琼斯博士正在将这项生物技术进行商业化,他建立了以纽约大水牛城为总部的Abcombi Biosciences创业公司。
这种胶囊的核心是对人体无害的大肠杆菌。研究人员在大肠杆菌的周围包裹了一种称为聚脂(β氨基酸酯)的合成聚合物,如同一个铁丝网围栏。正电荷聚合物与负电荷的细菌细胞壁结合起来,构成了混合胶囊。为了测试这种胶囊,研究人员将专抗肺炎球菌病的蛋白基础疫苗插入其中,这种蛋白质也是由Abcombi公司商业化生产的。小鼠实验结果非常令人振奋。
胶囊的混合设计提供了:· 引起免疫响应的抗原提呈细胞的主动和被动目标 · 可以加强免疫响应的自然和多成分的辅助特性· 指导特定免疫响应的双向细胞内传递· 同时生成和传递疫苗所需的抗原· 对抗肺炎球菌病的强力疫苗保护能力这种胶囊生产成本相对便宜,且用途广泛。譬如,胶囊可以用来作为癌症、病毒性传染病和其他疾病治疗方法的传送载体。
来源:纽约州立大学布法罗分校E. coli Might Be the Ideal Transport for Next-Gen Vaccines Most people recoil at the thought of ingesting E. coli. But what if the headline-grabbing bacteria could be used to fight disease? Researchers experimenting with harmless strains of E. coli -- yes, the majority of E. coli are safe and important to healthy human digestion -- are working toward that goal. Specifically, they have developed an E. coli-based transport capsule designed to help next-generation vaccines do a more efficient and effective job than today's immunizations.
The research, described in a study (insert study link) published in the journal Science Advances, highlights the capsule's success fighting pneumococcal disease, an infection that can result in pneumonia, sepsis, ear infections and meningitis.
"It's a bit counterintuitive given what you here about E. coli, but there are many strains of the bacteria, most of which are perfectly normal in the body that have great potential to fight disease," said Blaine A. Pfeifer, PhD, associate professor of chemical and biological engineering in the University at Buffalo School of Engineering and Applied Sciences.
Pfeifer is the study's co-lead author along with his former student Charles H. Jones, PhD, who is leading efforts to commercialize the biotechnology as CEO and founder of Buffalo, New York-based startup Abcombi Biosciences.
The core of the capsule is harmless E. coli. Around the bacteria, the researchers wrapped a synthetic polymer - called poly (beta amino ester) - like a chain link fence. The positive-charged polymer, combined with the negative-charged bacteria cell wall, create a sort of hybrid capsule.
To test the capsule, the researchers then inserted a protein-based vaccine, also being commercialized by Abcombi, designed to fight pneumococcal disease. The results, when tested in mice, were impressive.
The capsule's hybrid design provided:
• Both passive and active targeting of specific immune cells called antigen-presenting cells that trigger an immune response.
• Natural and multicomponent adjuvant properties, which enhance the body's immune response.
• Dual intracellular delivery mechanisms to direct a particular immune response.
• Simultaneous production and delivery of the components (antigens) required for a vaccine.
• Strong vaccination protection capabilities against pneumococcal disease.
It's also relatively inexpensive to create and flexible in terms of use. For example, the capsule could be used as a delivery device for therapies that target cancer, viral-based infectious disease and other illnesses.
Additional UB authors of the study include: Yi Li, Marie Beitelshees, Lei Fang, Mahmoud Kamal Ahmadi and Mingfu Chen, all of the Department of Chemical and Biological Engineering; Bruce Davidson and Paul Knight III, each of the Department of Anesthesiology and the Department of Microbiology and Immunology; Randall J. Smith Jr. of the Department of Biomedical Engineering; Stelios T. Andreadis of the Department of Chemical and Biological Engineering, the Department of Biological Engineering and UB's New York State Center of Excellence in Bioinformatics and Life Sciences.
Other additional authors include Andrew Hill of Abcombi Biosciences, and Anders Hakansson, formerly of UB but now with Lund University in Sweden.
The research was supported by grants from the National Institutes of Health and the Arthur A. Schomburg Fellowship Program at UB.
Source: University at Buffalo 又是一个人类的福音。
大肠杆菌可能是下一代疫苗理想的载体,这种胶囊生产成本相对便宜,且用途广泛。譬如,胶囊可以用来作为癌症、病毒性传染病和其他疾病治疗方法的传送载体。 这真是个非常非常好的信息,期待早日应用!
学习了,人类的福音乐 真是好消息,治疗又多了一个途径 非常好的信息还是第一次看到 新产品的问世,需要大量的证据支持,学习分享了!
页:
[1]